

Journal of Alloys and Compounds 356-357 (2003) 114-119

Journal of ALLOYS AND COMPOUNDS

www.elsevier.com/locate/jallcom

Structure stability maps for intermetallic AB₅ compounds

L. Guénée, K. Yvon*

Laboratoire de Cristallographie, Université de Genève, 24 Quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland Received 26 August 2002; accepted 1 September 2002

Abstract

The structural stability of AB₅ compounds (A=lanthanide, alkaline earth, transition element; B=d- and/or p-block element) has been modelled in terms of atomic properties and represented in the form of structure stability maps. The results on some 520 known binary and ternary known representatives show that the various structure types form rather well-defined stability domains in three-dimensional space spanned by valence electron concentration, VEC, electronegativity difference, $\Delta \chi$, and radius ratio, R_A/R_B . Emphasis is placed on hexagonal CaCu₅ type compounds that occur within the intervals 5.5<VEC<9.5, $-0.3 < \Delta \chi < 0.1$ and $1.3 < R_A/R_B < 1.5$. The maps are of interest for the search of new hydrogen storage materials, in particular those containing light and inexpensive 3d transition metals (Fe, Mn, etc.).

© 2003 Elsevier B.V. All rights reserved.

Keywords: Intermetallic compounds; Crystal structure; Valence electron concentration; Atom size; Electronegativity; Metal hydrides

1. Introduction

Intermetallic compounds of composition AB_5 (A= lanthanide, alkaline earth, transition element; B=d- and/or p-block element), in particular those crystallizing with the hexagonal CaCu₅ type structure and their ternary derivatives, are of interest for various technological applications such as permanent magnets and hydrogen storage. They crystallize with at least 20 different structure types. In order to find new AB₅ compounds it was of interest to model their structural stability in terms of atomic properties. Modeling of various structures based on purely geometrical grounds has been made some time ago by dimensional analysis of measured cell parameters, interatomic distances and tabulated sets of atomic radii (see, for example, Ref. [1]). Recently, the stability regime of the CaCu₅ structure has been re-investigated by this method for some 50 known binary representatives containing rareearth (R) and transition elements [2]. The analysis was based on measured structure parameters which means that its predictive power could not be easily tested. In this work, an analysis is made based on atomic properties along the lines of Ref. [3] and others. Both binary and ternary compositions are included, covering a total of 520 compounds that crystallize with some 15 structure types. It will be shown that the various structures occupy well defined stability domains in three-dimensional space spanned by valence electron concentration (VEC), electronegativity difference ($\Delta \chi$) and radius ratio (R_A/R_B). The predictive power of the analysis was tested on a few examples. Special attention was payed to CaCu₅ type compounds because of their importance in the energy sector.

2. Model

The structural stability of binary AB_5 and ternary $A(B,B')_5$ compounds (A=rare earth, alkaline earth, Zr, Hf, Th; B=transition elements and/or p-block element such as Al, Ga, Sn, In, Si, Ge) was modelled in terms of three parameters:

2.1. Geometric factor

The influence of atomic size was described by the radius ratio R_A/R_B as calculated from a tabulated set of atom radii [4]. For ternary compositions $AB_{5-x}B'_x$ an average radius for the B component was calculated according to the relation $R_{BB'} = [(5-x)R_B + xR_{B'}]/5$.

^{*}Corresponding author. Tel.: +41-22-702-6231; fax: +41-22-702-6864.

E-mail address: klaus.yvon@cryst.unige.ch (K. Yvon).

2.2. Electronegativity

Its influence was described by the electronegativity difference $\Delta \chi = 2/6[\chi_A - \chi_B]$ as calculated from values reported by [5]. For ternary compositions $AB_{5-x}B'_x$ an average value for the B component was calculated according to the relation $\chi_{BB'} = [(5-x)\chi_B + x\chi_{B'}]/5$.

2.3. Valence electron concentration (VEC)

For binary AB₅ compounds its value was calculated as $VEC = (VE_A + 5VE_B)/6$ and for ternary $AB_{5-x}B'_x$ compounds as $VEC = (VE_A + (5-x)VE_B + xVE_B)/6$ (VE_A, VE_B , number of valence electrons of A and B atoms). Full valences were used, such as VE(Cu) = 11, VE(Th) = 4, VE(R) = 3 (except for Ce^{IV}, Eu^{II} and Yb^{II}).

2.4. Structure data

The compositions and structures of AB₅ compounds were retrieved from the following sources: *Pearson's Handbook of Crystallographic Data for Intermetallic Phases* [6], *Atlas of Crystal Structure Types for Intermetallic Phases* [7], *Binary Alloy Phase Diagrams* [8], *Handbook of Ternary Alloy Phase Diagrams* [9], and *Red Books* [10]. The structure types covered, and their symme*try and number of representatives are summarised in Table* 1. Those containing boron and silicon are included in the maps but not discussed in detail because of their specific

Table 1									
Structure ty	/pes, sj	pace g	roups, '	VEC ranges	and	number	of r	epresenta	tive

Structure type	Space group	VEC range	Number of representatives	Figure
CaCu	P6/mmm	5-10	194	1-6
$AuBe_{5}$ (MgCu ₄ Sn ^c)	F43m	3-10	74	1 - 4
PrNi ₂ Al ₃ ^a	P6/mmm	5-6	10	6
YNi ₂ Al ₃ ^b	P6/mmm	5-7	50	5,6
SmAg ₃₅ Al ₁₅ ^g	P 62m	7-8	3	4
BaZn ₅	Cmcm	5-6	6	6
DyAg _{2.4} Al _{2.6} ^f	$P6_3/mmc$	6–7	10	5
Nd ₃ Ni ₁₃ B ₂ ^d	P6/mmm	9-10	12	2
CeCo ₄ B ^d	P6/mmm	5-8	30	4-6
CeCo ₃ B ₂ ^a	P6/mmm	5-7	32	5,6
LaRu ₃ Si ₂ ^e	PG_3/m	5-6	3	6
ErRh ₃ Si ₂ ^e	Imma	6–7	9	5
ErIr ₃ B ₂ ^e	C2/m	6–7	20	5
Ce ₂ Co ₇ B ₃ ^d	P6/mmm	6–7	11	5
$\operatorname{Ce}_{3}\operatorname{Co}_{11}\operatorname{B}_{4}^{d}$	P6/mmm	8–9	12	3

^a Ordered derivative of CaCu₅.

^b Stacking block variant of CaCu₅ with cell parameter relationships $a=a_{CaCu5}\sqrt{3}$ and $c=c_{CaCu5}$, also called HoNi_{2.6}Ga_{2.4} type.

^c Ordered substitution derivative of AuBe₅.

^d Stacking variant of CaCu₅ and YNi₂Al₃.

^e Distorted (low-symmetry) variant of CeCo₃B₂.

^f Disordered derivative of ErZn₅.

^g Disordered derivative of CaCu₅.

Fig. 1. Structure stability map for binary AB₅ compounds. (1) ThFe₅, (2) Yb(2)Cu₅, (3) Yb(3)Cu₅, (4) Ce(3)Cu₅, (5) Ce(4)Cu₅, (6) CeNi₅, (7) CeCo₅, (8) LaNi₅, (9) NdCu₅, (10) DyNi₅, (11) Ce^{IV}Fe₅, (12) LuNi₅, (13) LaCu₅, (14) SmCu₅, (15) ErCu₅, (16) LuCu₅.

crystal chemistry. On the other hand, structure types having few representatives such as LuMn₅, ErZn₅, MgZn₅, MnCu₄In, LaAl₄Co, YAl₄Ni, ScNi₂Si₃ and LiMg₂Zn₃ are not included in Table 1. For each compound appropriate values for $R_{\rm A}/R_{\rm B}$, $\Delta \chi$ and VEC were calculated (for a detailed list see Ref. [11]) and used to construct structural stability maps (called 'maps' thereafter). For clearness, the maps of binary and ternary compounds are presented separately. That for the binary compounds was drawn as a function of $R_{\rm A}/R_{\rm B}$ and $\Delta \chi$ for various VEC as shown in Fig. 1, whereas those for the ternary compounds were drawn in VEC intervals of $9 \le VEC \le 10$, $8 \le VEC \le 9$, $7 \le 10^{-10}$ VEC<8, $6 \le VEC \le 7$ and $5 \le VEC \le 6$ as shown in Figs. 2-6, respectively. The compounds in these maps appear as data points with appropriate symbols that refer to the various structure types.

Fig. 2. Structure stability map for ternary $AB_{5-x}B'_x$ compounds with $9 \le VEC \le 10$. (1) NdCu₄Ag, (2) DyNi₄Au, (3) GdNi₄Cu, (4) GdCu₄Ni.

Fig. 3. Structure stability map for ternary $AB_{5-x}B'_x$ compounds with $8 \le VEC < 9$. (1) $YNi_{3.5}Mn_{1.5}$, (2) YNi_4Mn , (3) $NdCu_4Al$, (4) $CeNi_{4.3}Mn_{0.7}$, (5) $LaNi_4Mn$, (6) $LaNi_3Mn_2$, (7) $LaNi_4Fe$, (8) $LaNi_3Fe_2$.

Fig. 4. Structure stability map for ternary $AB_{5-x}B'_{x}$ compounds with $7 \le VEC < 8$. (1) $LaNi_{3}Mn_{2}$, (2) $NdNi_{3}Mn_{2}$, (3) $PrNi_{3}Mn_{2}$, (4) $DyNi_{4}Al$, (5) $YCu_{3}Al_{2}$, (6) $CeNi_{3}Mn_{2}$, (7) $CeNi_{2.5}Mn_{2.5}$, (8) $CeNi_{2}Mn_{3}$, (9) $LaNi_{2}Mn_{3}$, (10) $NdNi_{2}Mn_{3}$, (11) $GdNi_{2}Mn_{3}$, (12) $LaNi_{4}Mg$, (12b) $(La_{0.5}Mg_{0.5})Ni_{2}$, (13) $LaFe_{4}Ni$, (14) $YNi_{4}Mg$, (15) $LaNi_{2}Fe_{3}$, (16) $NdNi_{4}Mg$, (16b) $(La_{0.5}Mg_{0.5})Ni_{2}$.

Fig. 5. Structure stability map for ternary $AB_{5-a}B'_{a}$ compounds with $6 \le VEC \le 7$. (1) NdNi₃Al₂, (2) DyNi₃Ga₂, (3) GdNi₃Ga₂, (4) GdNi₃Sn₂.

Fig. 6. Structure stability map for ternary $AB_{5-x}B'_x$ compounds with $5 \le VEC \le 6$.

3. Results

3.1. Domains of stability

As expected AB₅ compounds crystallising with the same structure are concentrated in the maps in domains of structural stability (called 'domains' hereafter). The domains are relatively well defined for commonly occurring structure types such as CaCu₅ (194 members), AuBe₅ (74) and YNi₂Al₃ (50) (see closed lines in Figs. 1–6) but less well defined for uncommon structure types such as $LaRu_3Si_2$ (3) that overlaps with the structurally related CeCo₃B₃ (32) and ErRh₃Si₂ (9) domains (see Figs. 5 and 6), and $PrNi_2Al_3$ (10) that overlaps with YNi_2Al_3 (Fig. 6). As expected, some overlap also exists between the structurally related YNi₂Al₃, CaCu₅ and CeCo₄B (30) domains (Figs. 4 and 5), and the CaCu₅ domain is not well defined for low VEC values for which it overlaps with the YNi₂Al₃ and PrNi₂Al₃ domains (Figs. 5 and 6). For binary compositions AB₅ the major domains are CaCu₅ and AuBe₅ type (Fig. 1). Both extend over relatively wide VEC intervals (CaCu₅: 7.3<VEC<10.3; AuBe₅: 3<VEC<9.8, VEC values not indicated in Fig. 1 but listed in Ref. [11]) which suggests that electron concentration is not of major importance for structural stability. On the other hand, the geometric factor appears to be important because big radii ratios favour CaCu₅ type $(R_A/R_B > 1.4)$ and small ratios AuBe₅ type structures $(R_A/R_B < 1.3)$. For intermediate ratios the domains overlap (see 'mixed' region in Fig. 1). This is due to the fact that AuBe₅ type structures tend to form at low and CaCu₅-type structures at high temperature. Electronegativity appears to be less important for structural stability because the $\Delta \chi$ ranges are relatively wide and do not much differ between structure types (CaCu₅: -0.3 < $\Delta \chi < 0.1$; AuBe₅: $-0.2 < \Delta \chi < 0.2$).

For ternary compositions $AB_{5-x}B'_x$ (Figs. 2–6) at least 15 (for complete list see Ref. [11]) different structure

domains occur of which the CaCu₅ type is the most important. Compared to the binary compounds the latter extends over a wider VEC range (5.5<VEC<9.5) and towards lower VEC values (see for example NdNi₃Al₂; VEC=6.5, (1) in Fig. 5). Yet valence appears to play an important role because the domain size and shape changes considerably as a function of VEC. As VEC decreases the number of different structure types generally increases. At high VEC (8<VEC<10) four domains appear (CaCu₅, AuBe₅, Nd₃Ni₁₃B₂, Ce₃Co₁₁B₄) while at low VEC seven (5<VEC<6) and eight (6<VEC<7) domains appear. At high VEC values (9 \leq VEC<10) AuBe₅ type structures prevail while at low values ($5 \le VEC \le 6$) PrNi₂Al₃, CeCo₃B₂ and YNi₂Al₃ type structures prevail. VEC values below 7 appear to preclude the formation of AuBe₅ type structures and values below 8 preclude $Nd_3Ni_{13}B_2$ and $Ce_3Co_{11}B_4$ type structures. As to the geometric factor low $R_{\rm A}/R_{\rm BB'}$ values favour the AuBe₅ type (1.1< $R_{\rm A}/R_{\rm BB}$ <1.3) and high values the CaCu₅ type $(1.3 < R_A/R_{BB} < 1.5)$. The highest $R_A/R_{BB'}$ values occur with CeCo₃B₂, $CaRh_3B_2$, $Ce_2Co_7B_3$ and $CeCo_4B$ type structures (1.5< $R_{\rm A}/R_{\rm BB} \le 1.6$). Electronegativity is important because the domains limits depend strongly on $\Delta \chi$. As to the YNi₂Al₃ type structures they appear to be governed mainly by the VEC. They are situated in a relatively narrow interval of 5.5 < VEC < 7 and are at the border of the CaCu₅ domain at high and of the PrNi₂Al₃ domain at low VEC values. The geometric factor appears to be less important in view of the relatively wide range of $1.28 < R_{A}/R_{B} < 1.45$. BaZn₅ type structures appear only at relatively big R_A/R_B values (Fig. 6).

In summary, the model allows one to rationalize the structural stability of 480 known AB₅ and A(B,B')₅ compounds. Only six compounds appear to be less well situated. Among these three CaCu₅-type compounds (ANi₃Mn₂, A=La, Nd, Pr; VEC=7.83; see (1), (2) and (3) in Fig. 4) are slightly outside their domain in the 8 \leq VEC<9 map (they would be inside their domain in the 8 \leq VEC<9 map), while the two AuBe₅ type compounds (YNi_{3.5}Mn_{1.5}, YNi₄Mn; *1* and *2* in Fig. 3) and a recently reported MgCu₄Sn type compound (YNi₄Mg [12], (14) in Fig. 4) are in the CaCu₅ domain (for a possible explanation see below). Thus more than 98% of the compounds is correctly reproduced by the maps. The validity of these maps can be demonstrated by the following examples.

3.2. Selected examples

3.2.1. Binary CaCu₅ type structures

In the presence of trivalent A components such as rare earths, B components having less than nine valence electrons (Ti, V, Cr, Mn, Fe) and more than 11 valence electrons (Zn) do not form $CaCu_5$ type structures under normal synthesis conditions because their VEC is presumably too low (VEC=7.17) and to high (VEC=10.5), respectively. However, this structure forms with tetravalent

A components such as Th, as shown by $ThFe_5$ ((1) in Fig. 1, VEC=7.33) which is the only known iron-based member of that type. The influence of atom valence and size on the stability domain of CaCu₅ type structures can be seen on the maps for R elements that are not necessarily trivalent such as Ce, Yb and Eu. Ytterbium in YbCu₅, for example, is divalent in the (low-pressure) CaCu₅ type polymorph ((2) in Fig. 1, $R_A/R_B = 1.518$) and trivalent in the high-pressure $AuBe_5$ type polymorph ((3) in Fig. 1, $R_{\rm A}/R_{\rm B}$ = 1.362), in agreement with literature. As to cerium, it is known to be trivalent in the CaCu₅ type compound $CeCu_5$ ((4) in Fig. 1) but higher-valent in the structural analogues CeNi_5 ((6) in Fig. 1) and CeCo_5 ((7) in Fig. 1). These findings are consistent with the maps in which $CeCu_5$ would be situated in the AuBe₅ domain ((5) in Fig. 1) if its Ce valency was >3. Yet, no such compound has been reported so far.

3.2.2. CaCu₅ versus AuBe₅ type structures

At high VEC values (8<VEC<10) the limits between CaCu₅ and AuBe₅ domains shift to higher $R_A/R_{BB'}$ values as the VEC is increased (see maps 8<VEC<9 and 9<VEC<10). Thus AuBe₅ type compounds are expected to be stabilised by substituting B atoms of either higher valence and similar atom size, or of similar valence and bigger atom size. This is confirmed by the solubility of Ag, Au and Al in ACu₅ and ANi₅ (A=rare earth). Substitution of Cu and Ni in CaCu₅ type NdCu₅ and DyNi₅ ((9) and (10) in Fig. 1) by bigger Ag and Au decreases $R_A/R_{BB'}$ and stabilises the AuBe₅ type compounds NdCu₄Ag and DyNi₄Au ((1) and (2) in Fig. 2), while substitution by lower valent Al maintains the CaCu₅ type structure in NdCu₄Al ((3) in Fig. 3, VEC=8.33) and DyNi₄Al ((4) in Fig. 4, VEC=7.67) in spite of their smaller $R_A/R_{BB'}$.

3.2.3. Solid solutions $ACo_{5-x}Ni_x$ and $ACu_{5-x}Ni_x$ (A = rare earths)

According to the maps both series are expected to crystallise with the structure types of the corresponding binary compounds ACo_5 and ANi_5 ($CaCu_5$ type, see for example (12)-LuNi_5 in Fig. 1) and ACu_5 ($CaCu_5$ type for A=La ((13) in Fig. 1)-Sm (14), $AuBe_5$ type for A=Er (15)-Lu (16), mixed for A=Gd-Ho). Literature data in fact confirm that $ACo_{5-x}Ni_x$ forms a continuous solid solution ($0 \le x \le 1$) with $CaCu_5$ type structure, as does $ACu_{5-x}Ni_x$ (A=La-Sm,Y). For heavy (small) rare earths and copper-rich compositions the latter series crystallizes with $AuBe_5$ type structures ((4)-GdCu_4Ni in Fig. 2) and for Ni-rich compositions with $CaCu_5$ type structures ((3)-GdNi_4Cu in Fig. 2).

3.2.4. Solubility of Mn in CeNi₅

Literature data show that the CeNi_{5-x}Mn_x series crystallizes with CaCu₅ type structure for $x \le 0.7$ and $2.4 \le x \le$ 2.7 and AuBe₅ type structure for $0.9 \le x \le 2.1$. For x = 3 an undetermined hexagonal structure occurs. Inspection of the maps suggest that these structural changes are accompanied by a valence change of cerium from Ce^{IV} in Ni-rich compositions to Ce^{III} in Mn-rich compositions as shown by CeNi_{4.3}Mn_{0.7} ((4) in Fig. 3) and CeNi₃Mn₂, CeNi_{2.5}Mn_{2.5} and CeNi₂Mn₃ ((6), (7) and (8) in Fig. 4) that are at the limit of the CaCu₅ domain. A trivalent valence state of cerium in the latter is consistent with the existence of ANi₂Mn₃ analogues with trivalent A components such as R=La, Nd, Gd ((9), (10) and (11) in Fig. 4).

3.2.5. Solubility limits of $LaNi_{5-x}B'_x$ (B'=Mn, Al, Cu, Co, Fe)

These CaCu₅ type systems are of particular interest for applications as rechargeable metal hydride electrodes. For the manganese series the maps reproduce well the observed solubility limit at x=2.1 (see (8)-LaNi₅ in Fig. 1 and (5)-LaNi₄Mn and (6)-LaNi₃Mn₂ in Fig. 3). Although LaNi₃Mn₂ ((1) in Fig. 4, VEC=7.83) is situated slightly outside the CaCu₅ domain on the $7 \le VEC \le 8$ map, it is inside the domain on the $8 \le VEC \le 9$ map ((6) in Fig. 3). At higher Mn contents the compositions $2 \le x \le 2.5$ (7 \le VEC<8) and $4 \le x \le 5$ ($6 \le VEC \le 7$) are clearly outside the CaCu₅ domain, in agreement with literature. For the Al series the reported limit of solid solution (x=1) is close to that suggested by the maps ($x \sim 1.5$) (VEC=7.667, inside the CaCu₅ domain in the 7 \leq VEC \leq 8 map, outside in the $6 \leq VEC < 7$ map). For the Cu series the maps suggest a complete solid solution $(0 \le x \le 1)$, in accordance with literature. For the Fe series the maps suggest a solubility limit of $x\sim 2$ (see (7)-LaNi₄Fe, (8)-LaNi₃Fe₂ in Fig. 3), again in accordance with literature. The hypothetical compound LaNi₂Fe₃ is outside the CaCu₅ domain ((15) in Fig. 4) while the hypothetical compound LaNiFe₄ ((13) in Fig. 4) is close to its border.

3.2.6. $CaCu_5$ versus YNi_2Al_3 type structures

Aluminium- and gallium-rich compounds $AB_{5-x}B'_x$ with x>2.5 crystallise mainly with YNi_2Al_3 type structures. Clearly, their domain of existence superposes in part with the CaCu₅ domain (Figs. 5 and 6). This is due to the fact that some compounds adopt both structures, i.e., CaCu₅ type for as cast, and YNi_2Al_3 type for annealed conditions (see (2)-DyNi₃Ga₂ and (3)-GdNi₃Ga₂ in Fig. 5). A similar dimorphism occurs also with the recently reported GdNi₃Sn₂ [13] ($R_A/R_B=1.320$, VEC=6.833, $\Delta\chi=-0.236$, (4) in Fig. 5).

3.3. Attempts to synthesise new AB_5 compounds

In order to test the usefulness of the maps a few compositions were selected for which compound formation was either not reported or the structure not known. Note that the compositions selected on the maps refer to structural rather than thermodynamic stability. In order to avoid formation of 'pseudo-ternary' solid solutions only those compositions were tested that involve systems not known to form binary AB_5 compounds.

3.3.1. CeFe,

Iron-based compounds AFe_5 are expected to crystallize with $CaCu_5$ type structures only if the A component is tetravalent. According to the maps Ce^{IV} would be a candidate capable of stabilising that structure (VEC=7.33) ((11) in Fig. 1). However, attempts to form $CeFe_5$ at high pressure (25 kbar) and temperature (950 °C) failed.

3.3.2. $LaNi_4Mg$ and $NdNi_4Mg$

According to the maps these hypothetical compounds should crystallize with CaCu₅ type structures provided Mg is counted as a B element $((12)-\text{LaNi}_{4}\text{Mg} \text{ and } (16)-$ NdNi₄Mg in Fig. 4). Compounds of that composition were indeed synthesised, but found to crystallize with the MgCu₄Sn type structure, an ordered ternary derivative of AuBe₅. In this context it is worth recalling that the AuBe₅ structure is closely related to the MgCu₂ type structure (AB_2) in which magnesium can be considered as an A type rather than a B type component. This suggests that Mg containing compounds having MgCu₄Sn type structures should be classified as AB₂ rather than AB₅ compounds which would explain their unexpected position in the AB₅ maps (see (12b)-La_{0.5}Mg_{0.5}Ni₂ and (16b)-Nd_{0.5}Mg_{0.5}Ni₂ in Fig. 4). This view is consistent with the fact that the La series $La_{1-r}Mg_rNi_2$ crystallizes with a disordered cubic MgCu₂ (C15) type structure at low Mg contents (0 < x <(0.67) and with the MgNi₂ (C36) type structure at higher Mg contents ($x \ge 0.67$). As to the ordered compounds $RNi_{4}Mg$ (R=La, Nd) they were found to absorb hydrogen reversibly in a useful range to compositions of up to RNi₄MgH₄ [14].

3.3.3. $LaNi_2Mn_3$

This hypothetical compound $(R_A/R_B=1.466, \text{VEC}=7.33)$ is slightly outside the CaCu₅ type domain ((9) in Fig. 4) and inside the YNi₂Al₃ domain. Attempts to synthesize this compound were successful and its structure was found [15] to be of YNi₂Al₃ type. It is the first manganese member of this type. So far, only aluminium, gallium and tin members were known, and they were relatively poor hydrogen absorbers. Interestingly, LaNi₂Mn₃ displays excellent hydrogen storage properties and forms a reversible hydride of composition LaNi₂Mn₃H_{4.6} [15].

3.3.4. YCu_3Al_2

This new compound [16] was reported after the present study was completed. It crystallizes with the $CaCu_5$ type structure and thus fits well onto the maps ((5) in Fig. 4).

4. Conclusions

The structural stability of AB₅ compounds has been modeled successfully based on atomic properties. Maps as

a function of R_A/R_B , $\Delta\chi$ and VEC reproduce well the stability domains of 15 structure types covering some 470 compounds. The maps have predictive power in the sense that they are capable of foreseeing structures of compounds that are thermodynamically stable. The successful synthesis of some new AB₅ compounds at 'predicted' compositions underlines the usefulness of the structure modeling approach for the search of new hydrogen storage materials.

Acknowledgements

This work has been supported by the Swiss National Science Foundation and the Swiss Federal Office of Energy.

References

- [1] W.B. Pearson, Zeit. Kristallogr. 151 (1980) 301-315.
- [2] K. Balkis Ameen, M.L. Bhatia, J. Alloys Comp. 347 (2002) 165– 170.
- [3] P. Villars, F. Hulliger, J. Less-Common Met. 132 (1987) 289-315.

- [4] E. Teatum, K. Gschneider, J. Waber, LA-2345, US Department of Commerce, Washington, DC, 1960.
- [5] A.I. Martynov, S.S. Batsanov, Russ. J. Inorg. Chem. 25 (12) (1980) 1737–1739.
- [6] P. Villars, L.D. Calvert, in: Pearson's Handbook of Crystallographic Data for Intermetallic Phases, 2nd Ed, American Society for Metals, Materials Park, OH 44073, 1991.
- [7] J.L.C. Daams, P. Villars, J.H.N. Van Vucht, in: Atlas of Crystal Structure Types for Intermetallic Phases, ASM International, Materials Park, OH 44073, 1991.
- [8] Binary Alloy Phase Diagrams, ASM International, 2nd Edition, plus Updates (1996).
- [9] P. Villars, A. Prince, H. Okamoto, in: Handbook of Ternary Alloy Phase Diagrams, ASM International, Materials Park, OH 44073, 1997.
- [10] Red Books, Constitutional Data and Phase Diagrams of Metallic Systems 1990–1995, MSI, ASM International, Materials Park, OH 44073, 1998.
- [11] L. Guénée, PhD-thesis No 3341, University of Geneva, 2002.
- [12] K. Aono, S. Orimo, H. Fujii, J. Alloys Comp. 309 (2000) L1-L4.
- [13] S. Pechev, J.-L. Bobet, B. Chevalier, B. Darriet, F. Weill, J. Solid State Chem. 150 (2000) 62–71.
- [14] L. Guénée, V. Favre-Nicolin, K. Yvon, J. Alloys Comp. 348 (2003) 129–137.
- [15] L. Guénée, K. Yvon, J. Alloys Comp. 348 (2003) 176-183.
- [16] K. Kadir, T. Sakai, I. Uehara, L. Eriksson, Acta Crystallogr. C 57 (2001) 999–1000.